


### Техническое описание

## Клапан регулирующий седельный трехходовой VF-3R (PN 16)

## Описание и область применения



Регулирующий клапан Ридан VF-3R предназначен для применения в системах тепло- и холодоснабжения зданий.

Клапан может сочетаться со следующими электрическими приводами Ридан:

- ARV(E)-1000R (DN 15-50),
- ARV(E)-1000R SU/SD (DN 15-50),
- AMV(E)-1800R (DN 65-80),
- AMV-2000R SU/SD (DN 65-80),
- AME-2000R SU/SD (DN 65-80),
- AMV(E)-3000R (DN 100-150),
- AMV(E)-3000R SU/SD (DN 100-150),
- AMV(E)-6500R (DN 100-250),
- AMV(E)-10KR (DN 100-300);
- AMV(E)-26KSR (DN 350-400).

### Особенности

- Низкий показатель протечки 0,01% от  $K_{VS}$  для DN = 15-400 мм.
- Быстрый монтаж приводов.
- Могут использоваться как для смешения, так и для разделения потоков.

### Основные характеристики

- Условный проход: DN = 15-400 мм.
- Пропускная способность:  $K_{VS} = 0.63-1960 \text{ м}^3/\text{ч}$ .
- Условное давление: PN = 16 бар.
- Температура воды или 50 %-го водного раствора гликоля: –5...150 °С (при температуре ниже 0 °С требуется подогреватель штока 065Z7020R); 0...150 °С для DN 250–400.
- Присоединение к трубопроводу: PN = 16 бар фланцевое EN 1092-2.

## Номенклатура и коды для оформления заказа

Пример заказа. Трехходовой клапан на смешение потоков, DN = 65 мм,  $K_{VS} = 52 \text{ м}^3/\text{ч}$ , PN = 16 бар,  $T_{\text{макс}} = 150 \,^{\circ}\text{C}$ , фланцевое соединение, электропривод питание на 230 В:

– клапан VF-3R DN65 кодовый номер 065Z3361R, 1 шт; – электропривод AMV-1800R 082G3443R1, 1 шт.

## Трехходовой клапан VF-3R

|        | 14 34                               | 1, v          |
|--------|-------------------------------------|---------------|
| DN, mm | К <sub>VS</sub> , м <sup>3</sup> /ч | Кодовый номер |
| 15     | 0,63                                | 065Z3351R2    |
| 15     | 1                                   | 065Z3352R2    |
| 15     | 1,6                                 | 065Z3353R2    |
| 15     | 2,5                                 | 065Z3354R2    |
| 15     | 4                                   | 065Z3355R2    |
| 20     | 6,3                                 | 065Z3356R2    |
| 25     | 10                                  | 065Z3357R2    |
| 32     | 16                                  | 065Z3358R2    |
| 40     | 25                                  | 065Z3359R2    |
| 50     | 40                                  | 065Z3360R2    |
| 65     | 55                                  | 065Z3361R     |
| 80     | 100                                 | 065Z3362R     |
| 100    | 160                                 | 065Z3363R     |
| 125    | 250                                 | 065B3125R     |
| 150    | 320                                 | 065B3150R     |
| 200    | 450                                 | 065B4200R     |
| 250    | 630                                 | 065B4250R     |
| 300    | 990                                 | 065B4300R     |
| 350    | 1300                                | 065B4350R     |
| 400    | 1960                                | 065B4400R     |



## Техническое описание

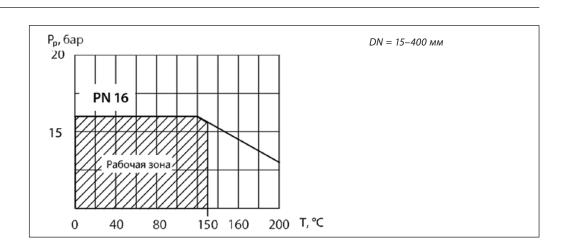
Клапан регулирующий седельный трехходовой VF-3R (PN 16)

# Номенклатура и коды для оформления заказа

## Дополнительные принадлежности

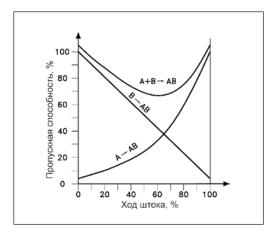
| Наименование                                    | Кодовый номер |
|-------------------------------------------------|---------------|
| Подогреватель штока для клапанов Ридан DN15-200 | 065Z7020R     |

## Запасные детали


| Наименование                                                 | Кодовый номер |  |  |  |
|--------------------------------------------------------------|---------------|--|--|--|
| Сальниковое уплотнение Ридан VFM-2R DN 65-80; VF-3R DN 15-80 | 065B2070R1    |  |  |  |
| Сальниковое уплотнение Ридан VFM-2R; VF-3R DN 100-300        | 065B2070R2    |  |  |  |

## Технические характеристики

| Условный проход DN, мм                                     | 15                                                                                             | 20    | 25      | 32    | 40    | 50     | 65     | 80                 | 100     | 125   | 150   | 200    | 250   | 300      | 350     | 400  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|---------|-------|-------|--------|--------|--------------------|---------|-------|-------|--------|-------|----------|---------|------|--|
|                                                            |                                                                                                |       |         |       | 25    |        | 55     |                    |         |       |       | 450    |       |          |         |      |  |
| Пропускная способность K <sub>VS</sub> , м <sup>3</sup> /ч | 0,6; 1; 1,6; 2,5; 4                                                                            | 6,3   | 10      | 16    |       | 40     |        | 100                | 160     | 250   | 320   | 450    | 630   | 990      | 1300    | 1960 |  |
| Ход штока, мм                                              |                                                                                                | 3     |         |       | ı     | 9      |        | 0                  |         |       | 40    |        |       |          | 70      |      |  |
| Динамический диапазон<br>регулирования                     | >50:1                                                                                          |       |         |       |       |        |        |                    |         |       |       |        |       |          |         |      |  |
| Характеристика регулирования                               | Логарифмическая (для прохода А–АВ); линейная (для прохода В–АВ)                                |       |         |       |       |        |        |                    |         |       |       |        |       |          |         |      |  |
| Коэффициент начала кавитации Z                             |                                                                                                |       |         |       |       |        |        | 0,45 0,4 0,35 0,25 |         |       |       |        |       | 0,21 0,2 |         |      |  |
| Протечка через закрытый клапан,                            |                                                                                                | ≥ 0,5 |         |       |       |        |        |                    |         | 0,33  |       | 0,23   | 0,21  |          | 0,2     |      |  |
| протечка через закрытый клапан,<br>% от К <sub>VS</sub>    | Порт А-В и А-АВ не более 0,01; порт В-АВ не более 2                                            |       |         |       |       |        |        |                    |         |       |       |        |       |          |         |      |  |
| Условное давление PN, бар                                  |                                                                                                |       |         |       |       |        |        | 16/25 <sup>1</sup> | l       |       |       |        |       |          |         |      |  |
| Максимальный перепад давления на                           | клапане (смесит                                                                                | ельнь | ій), пр | еодол | іевае | мый э  | лектр  | оприв              | водом   | при   | смеше | нии по | токов | в клап   | ане, ба | р    |  |
| ARV(E)-1000R/ARV(E)-1000R SU/SD                            |                                                                                                |       | 4       |       |       |        | _      | _                  | _       | _     | _     | _      | _     | _        | _       | _    |  |
| AMV(E)-1800R/AMV(E)-2000R SU/SD                            | _                                                                                              |       |         |       |       |        |        | 3,5                | _       | _     | _     | _      | _     | _        | _       | _    |  |
| AMV(E)-3000R/AMV(E)-3000R SU/SD                            |                                                                                                |       |         |       |       |        | _      | _                  | 3,5     | 2     | 1,2   | _      | —     | _        | _       | _    |  |
| AMV(E)-6500R                                               | _                                                                                              |       |         |       |       |        | _      | _                  | 4,5     | 4     | 3,5   | 2,9    | 1,2   | _        | _       | _    |  |
| AMV(E)-10KR                                                |                                                                                                |       |         |       |       |        | _      | _                  | 5       | 5     | 4     | 3,5    | 2,5   | 1,2      | -       | _    |  |
| AMV(E)–26KSR                                               |                                                                                                |       |         |       |       |        |        | _                  | _       | _     | _     | _      | _     | _        | 2,1     | 1,5  |  |
| Максимальный перепад давления на                           | клапане (разделительный), преодолеваемый электроприводом при разделении потоков в клапане, бар |       |         |       |       |        |        |                    |         |       |       |        |       |          |         |      |  |
| ARV(E)-1000R/ARV(E)-1000R SU/SD                            | 1                                                                                              |       |         |       |       |        |        | _                  | _       | _     | _     | _      | -     | _        | _       | _    |  |
| AMV(E)-1800R/AMV(E)-2000R SU/SD                            | _                                                                                              |       |         |       |       |        | 4      | 3,5                | _       | _     | _     | _      | _     | _        | _       | _    |  |
| AMV(E)-3000R/AMV(E)-3000R SU/SD                            |                                                                                                |       |         |       |       |        | _      | _                  | 3,5     | 2     | 1,2   | _      | -     | _        | -       | _    |  |
| AMV(E)-6500R                                               | 1                                                                                              |       |         |       |       |        | _      | _                  | 4,5     | 4     | 3,5   | 2,9    | 1,2   | _        | _       | _    |  |
| AMV(E)-10KR                                                | _                                                                                              |       |         |       |       |        |        | _                  | 5       | 5     | 4     | 3,5    | 2,5   | 1,2      | _       | _    |  |
| AMV(E)–26KSR                                               |                                                                                                | _     | _       | _     | _     | _      | _      | _                  | _       | 2,1   | 1,5   |        |       |          |         |      |  |
| Рабочая среда                                              |                                                                                                |       |         |       | Вода  | или 50 | ) % во | дный               | раств   | ор гл | иколя |        |       |          |         |      |  |
| рН среды                                                   |                                                                                                |       |         |       |       |        |        | 7–10               |         |       |       |        |       |          |         |      |  |
| Температура регулируемой среды T, °C                       | -5150 (-10130 <sup>1</sup> ) 0150 (-10130 <sup>1</sup> )                                       |       |         |       |       |        |        |                    |         |       |       |        | )1)   |          |         |      |  |
| Присоединение                                              |                                                                                                |       |         |       | Фл    | анцы   | , PN = | 16 ба              | р, по Е | N1092 | 2-2   |        |       |          |         |      |  |
| Материалы                                                  |                                                                                                |       |         |       |       |        |        |                    |         |       |       |        |       |          |         |      |  |
| Корпус                                                     | Высокопрочный чугун с шаровидным графитом QT450-10                                             |       |         |       |       |        |        |                    |         |       |       |        |       |          |         |      |  |
| Шток, золотник                                             | Нержавеющая сталь                                                                              |       |         |       |       |        |        |                    |         |       |       |        |       |          |         |      |  |
|                                                            | PTFE, FPM                                                                                      |       |         |       |       |        |        |                    |         |       |       |        |       |          |         |      |  |


<sup>1</sup> Возможное исполнение под заказ.

## Условия применения





## **Характеристики регулирования**

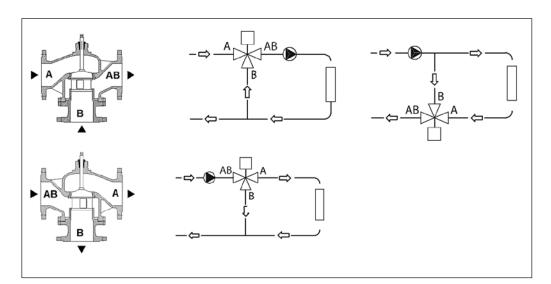


### Монтаж

Перед монтажом клапана трубопроводная система должна быть промыта, соединительные элементы трубопровода и клапана размещены на одной оси, клапан защищен от напряжений со стороны трубопровода.

Трубопроводы, на которые устанавливается клапан, должны быть проложены ровно, надежно зафиксированы и защищены от вибрации.

Клапаны DN15–50 имеют фланцы квадратной формы. Для монтажа клапана на трубопровод применяются стандартные прокладки и ответные фланцы круглой формы.


Для стабилизации потока перед и после клапана, рекомендуется устанавливать его на прямых участках трубопровода. Для клапанов работающих в режиме регулирования, DN100 и более требуется выдержать прямой участок, не менее 5–10D клапана. На выходе допускается не делать прямой участок. Прямой участок требуется для стабилизации потока, чтобы исключить различные завихрения, области изменения давления. Если клапан работает в режиме переключения потоков, то достаточно прямого участка 1–2D клапана на входе и выходе..

### Смешение или разделение потоков

Трехходовой клапан может быть использо ван как для смешения, так и для разделения потоков.

Если трехходовой клапан установлен в качестве смесительного клапана, то порты A и B являются входными, а порт AB — выходным. Такой клапан установливается для смешения потоков.

Трехходовой клапан также может быть установлен в качестве отводного клапана для разделения потоков. В этом случае порт АВ является входным, а порты А и В — выходными.





#### Выбор типоразмера клапана

#### Пример

Требуется выбрать регулирующий клапан для нижеследующих условий.

### Исходные данные

Расход: 6 м<sup>3</sup>/ч.

Перепад давления в системе: 0,5 бар. Теплоноситель: вода с температурой  $T_1 = 150~^{\circ}\text{C}$ , и давлением насыщенных паров  $P_{\text{HaC}} = 3,86$  бар (табличное значение, зависит от

Р<sub>нас</sub> = 3,86 бар (таоличное значение, зависит от температуры рабочей среды).

Избыточное давление теплоносителя перед клапаном:  $P_1 = 6$  бар;

#### Решение

Перепад давления на клапане выбирается таким образом, чтобы его авторитет по отношению к суммарной потере давления на системе и клапане был в диапазоне от 0,3 до 0,7 (предпочтительно 0,4).

Перепад давления на клапане не должен быть больше  $\Delta P_{\text{max}}$  максимально допустимого перепада давления, преодолеваемого электроприводом.

Авторитет клапана выражается уравнением:

$$a=rac{\Delta ext{P1}}{\Delta ext{P1}+\Delta ext{P2}}$$
 , где

 $\Delta P_1$  — перепад давления при полностью от- крытом клапане:

 $\Delta P_2$  — перепад давления во всем остальном регулируемом участке.

Возьмем  $\Delta P_{\rm кл} = 0,5$  бар.

Рассчитаем требуемую пропускную способность клапана по формуле:

$$K_V=1$$
,2  $imes rac{G_{
m p}}{\sqrt{\Delta P_{
m KM}}}$ , где

1,2 — коэффициент запаса;

 $\mathsf{G}_\mathsf{p}$  — расчетный расход теплоносителя через клапан, м³/ч;

 $\Delta P_{\rm KЛ}$  — заданный перепад давлений на клапане, бар.

$$K_V = 1.2 \times \frac{6}{\sqrt{0.5}} = 10 \text{ m}^3/\text{y}$$

Выбираем клапан VF-3R, PN16, DN25 с  $K_{VS} = 10 \text{ m}^3/4$ .

Потеря давления в полностью открытом клапане составляет:

$$\Delta P_{\text{кл.факт.}} = \left(\frac{G}{K_{ne}}\right)^2 = \left(\frac{6}{10}\right)^2 = 0.36$$

Авторитет выбранного клапана равен:

$$a = \frac{0,36}{0.36 + 0.5} = 0.4$$

Зная давление перед клапаном и температуру теплоносителя, необходимо проверить клапан на кавитацию и шум.

Рассчитаем предельно допустимый перепад давлений на клапане для работы без кавитации:

$$\Delta P_{KJ} \text{ пред} = Z \cdot (P_1 - P_{Hac}) = 0.5 \cdot (6-3.86) = 1 \text{ бар,}$$

где

Z — коэффициент начала кавитации;

 $P_1$  — избыточное давление теплоносителя перед регулирующим клапаном, бар;

 $P_{\text{hac}}$  — избыточное давление насыщенных паров воды в зависимости от ее температуры  $\mathsf{T}_1$ , бар.

$$\Delta P_{KJI} \prod_{DDEJ} > \Delta P_{KJI}$$

значит клапан выбран верно и может работать при заданном перепаде давления без кавитации.

Рекомендуемая скорость прохождения теплоносителя во входном сечении клапана для тепловых пунктов жилого фонда от 1,5 до 3,5 м/с для всех остальных тепловых пунктов от 1,5 до 5 м/с.

Проверка клапана на шумообразование производится по формуле:

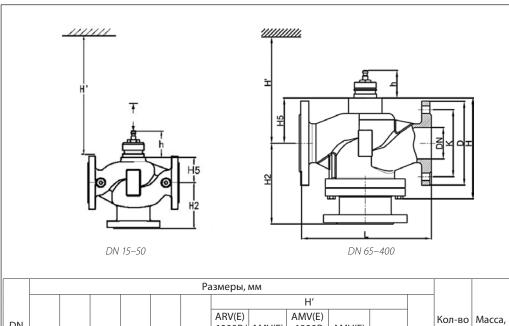
$$V = G_p \cdot (18,8/DN)^2$$
, где

V — скорость теплоносителя во входном сечении клапана, м/с;

18,8 — переводной коэффициент;

DN — диаметр клапана, мм.

$$V = 6 \cdot (18,8/25)^2 = 3.4 \text{ m/c}.$$


Для ЦТП скорость теплоносителя допустима.

### Итог

Выбираем код 065Z3357R, регулирующий клапан Ридан VF-3R, PN 16, DN 25,  ${\rm K_{VS}}$  10 .



Габаритные и присоединительные размеры



|     | Размеры, мм |     |     |       |      |     |                                                |                           |                                               |                           |                  |     |                |              |
|-----|-------------|-----|-----|-------|------|-----|------------------------------------------------|---------------------------|-----------------------------------------------|---------------------------|------------------|-----|----------------|--------------|
|     |             |     |     |       |      |     |                                                |                           |                                               | 1                         |                  |     |                |              |
| DN  | L           | D   | К   | н     | H5   | H2  | ARV(E)<br>-1000R/<br>ARV(E)<br>-1000R<br>SU/SD | AMV(E)<br>-2000R<br>SU/SD | AMV(E)<br>-1800R<br>-3000R<br>-3000R<br>SU/SD | AMV(E)<br>-6500R<br>-10KR | AMV(E)<br>-26KSR | h   | Кол-во<br>отв. | Масса,<br>кг |
| 15  | 130         | 95  | 65  | 128   | 39   | 65  | 393                                            | _                         | _                                             | _                         | _                | 66  | 4-M12          | 6,75         |
| 20  | 160         | 105 | 75  | 143   | 42   | 75  | 396                                            | _                         | _                                             | _                         | _                | 66  | 4-M12          | 7,05         |
| 25  | 160         | 115 | 85  | 152,5 | 46,5 | 80  | 400                                            |                           | _                                             |                           | _                | 66  | 4-M12          | 8,5          |
| 32  | 180         | 140 | 100 | 178,5 | 56,5 | 90  | 410                                            | _                         | _                                             | _                         | _                | 66  | 4-M16          | 9,8          |
| 40  | 200         | 150 | 110 | 194   | 62   | 100 | 416                                            | _                         | _                                             | _                         | _                | 66  | 4-M16          | 12           |
| 50  | 230         | 165 | 125 | 212   | 63   | 115 | 417                                            |                           |                                               |                           | _                | 66  | 4-M16          | 13,7         |
| 65  | 290         | 185 | 145 | 206   | 77   | 183 | _                                              | 497                       | _                                             | _                         | _                | 66  | 4-M16          | 18           |
| 80  | 310         | 200 | 160 | 209   | 76   | 193 | _                                              | 496                       | _                                             |                           | _                | 66  | 8-M16          | 24           |
| 100 | 350         | 220 | 180 | 247   | 99   | 203 | _                                              |                           | 570                                           |                           | _                | 66  | 8-M16          | 31           |
| 125 | 400         | 250 | 210 | 293   | 119  | 236 | _                                              | _                         | 550                                           | _                         | _                | 66  | 8-M16          | 44           |
| 150 | 480         | 285 | 240 | 323   | 133  | 254 | _                                              | _                         | 603                                           |                           | _                | 66  | 8-M20          | 61           |
| 200 | 495         | 340 | 295 | 386   | 145  | 307 | _                                              | _                         | _                                             | 910                       | _                | 66  | 12-M20         | 91           |
| 250 | 622         | 405 | 355 | 536   | 248  | 392 | _                                              | _                         | _                                             | 1013                      | _                | 100 | 12-M24         | 163          |
| 300 | 698         | 460 | 410 | 593   | 280  | 389 | _                                              |                           | _                                             | 1045                      | _                | 100 | 12-M24         | 221          |
| 350 | 787         | 520 | 470 | 660   | 360  | 300 | _                                              | _                         | _                                             | _                         | 1115             | 170 | 16-M24         | 345          |
| 400 | 864         | 580 | 525 | 694   | 360  | 340 | _                                              | _                         | _                                             | _                         | 1115             | 170 | 16-M27         | 350          |
|     |             |     |     |       |      |     |                                                |                           |                                               |                           |                  |     |                |              |