

Техническое описание

Клапан регулирующий седельный проходной VFM-2R

Описание и область применения

Регулирующий клапан Ридан VFM-2R предназначен для применения в системах тепло- и холодоснабжения зданий.

Клапан может сочетаться со следующими электрическими приводами Ридан:

- ARV-1000R (DN 15-50) через адаптер,
- ARE-1000VFM-R (DN 15-50) через адаптер,
- ARV-1000R SU/SD (DN 15-50) через адаптер,
- ARE-1000R SU/SD (DN 32-50) через адаптер,
- AMV(E)-1800R (DN 65-80),
- AMV(E)-2000R SU/SD (DN 65-80),
- AMV(E)-3000R (DN 100-200),
- AMV(E)-3000R SU/SD (DN 100-200),
- AMV(E)-6500R (DN 250),
- AMV(E)-10KR (DN 300-400).

Особенности

- Двойная линейная характеристика регулирования (DN 15–50).
- Линейная-логарифмическая (DN 65-400).
- Динамический диапазон регулирования: 50:1 (DN 15-50), >50:1 (DN 65-400).
- Разгруженный по давлению.

Основные характеристики

- Условный проход: DN = 15-400 мм.
- Пропускная способность: $K_{VS} = 0.25-1960 \text{ м}^3/\text{ч}.$
- Условное давление: PN = 25 бар (для DN 15-50), 16 бар (DN 65-400).
- Регулируемая среда: вода или 30 % (для DN 15–50); 50 % водный раствор гликоля.
- Температура регулируемой среды: +2...150 °C (для DN 15–50);
 - -5...150 °C для DN 15–200 (при температуре ниже 0 °C требуется подогреватель штока 065Z7020R);
 - 0...150 °C для DN 250-400.
- Присоединение к трубопроводу: фланцевое EN 1092-2.

Номенклатура и коды для оформления заказа

Эскиз	DN, mm	K _{vs} , м ³ /ч	PN, бар	ΔP _{max} , бар ¹⁾	Кодовый номер			
		0,25			065B3050 R			
		0,4			065B3051 R			
		0,63			065B3052 R			
	15	1,0			065B3053 R			
		1,6			065B3054 R			
		2,5	25	16	065B3055R			
		4,0	25	16	065B3056 R			
U U	20	6,3			065B3057 R			
	25	10			065B3058 R			
	32	16			065B3059 R			
	40	25			065B3060 R			
	50	40			065B3061 R			
	65	55			065B3500 R			
	80	100			065B3501 R			
п	100	160		8	065B3502 R			
e e	125	250		0	065B3503 R			
	150	320	16(25 ²⁾)		065B3504 R			
	200	450	10(2327)		065B3505 R			
	250	630		10(6)	065B3506 R			
	300	990		8	065B3507 R			
	350	1300		7	065B3509 R			
	400	1960		6	065B3508R			

¹⁾ ДР_{тах} — максимально допустимый перепад давления, преодолеваемый электроприводом при закрытии и работе клапана. В скобках указано значение для привода с меньшим усилием.

²⁾ Возможное исполнение под заказ

Клапан регулирующий седельный проходной VFM-2R

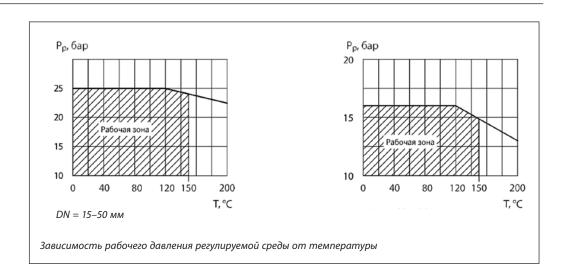
Номенклатура и коды для оформления заказа

Дополнительные принадлежности

Наименование	Кодовый номер		
Подогреватель штока для клапанов Ридан DN15-200	065Z7020 R		
Адаптер для присоединения клапанов VFM-2R DN 15–50 к электроприводам ARV-1000R и ARE-1000VFM-R	065Z0311 R		

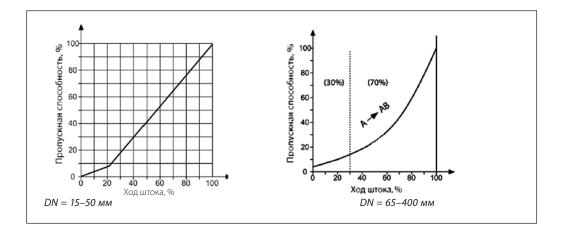
Адаптер для присоединения клапанов VFM-2R DN 65–400 к электроприводам ARV(E)-1800R, ARV(E)-3000R, ARV(E)-10KR не требуется.

Запасные детали


Наименование	Кодовый номер
Сальниковый блок для клапана Ридан VFM-2R DN 15–50	065B2070 R
Уплотнение сальниковое Ридан VFM-2R DN 65−80; VF-3R DN 15−80 −5+150 °C	065B2070 R1
Уплотнение сальниковоее Ридан VFM-2R; VF-3R DN 100−300 −5+150 °C	065B2070 R2

Технические характеристики

Условный проход DN, мм	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400
Пропускная способность Қ _{уѕ} , м³/ч	0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0	6,3	10	16	25	40	55	100	160	250	320	450	630	990	1300	1960
Ход штока, мм	5	5	7	10	10	10	2	.0	40 70						70	
Динамический диапазон регулирования	50:1					>50:1										
Характеристика регурирования	Двойная линейная								J	Тиней н	ная-лоі	гарифи	иическ	ая		
Коэффициент начала кавитации Z	≥ 0,5					0,45	0,4	0,35 0,25 0,21				0,21	0,2			
Протечка через закрытый клапан, % от K _{vs}	0,05					0,01										
Условное давление PN, бар	25						16(25 ¹⁾)									
Рабочая среда	Вода или 30 % водный раствор гликоля							Вода или 50 % водный раствор гликоля								
рН среды	7–10															
Температура регулируемой среды Т, °C	2150					-5150						0150				
Присоединение	Фланцевое, PN = 25 бар по стандарту EN 1092-2					Фланцевое, PN = 16 бар по стандарту EN 1092-2										
Материалы																
Корпус клапана и крышка	Высокопрочный чугун EN-GJS-400-18-LT (GGG 40)					Высокопрочный чугун с шаровидным графитом QT450-10										
Седло, золотник и шток	Нержавеющая сталь															
Уплотнение сальника	EPDM					PTFE, FPM										

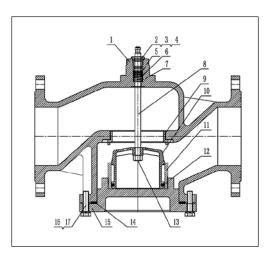

¹⁾ Возможное исполнение под заказ

Условия применения

Характеристики регулирования

Условия применения

При монтаже клапана необходимо убедиться, чтобы направление движения регулируемой среды совпадало с направлением стрелки на его корпусе.


Перед монтажом клапана трубопроводная система должна быть промыта, соединительные элементы трубопровода и клапана размещены на одной оси, клапан защищен от напряжений со стороны трубопровода.

Клапан может быть установлен в любом положении, кроме положения электроприводом вниз.

Необходимо предусмотреть достаточное пространство вокруг клапана с электроприводом для их демонтажа и обслуживания.

Электропривод может быть повернут вокруг своей оси в удобное для обслуживания положение, для чего следует ослабить крепление привода на клапане.

Устройство клапана *(DN 65–300)*

- 1 корпус клапана;
- 2, 3, 4 сальниковый блок;
- 5 уплотнительные кольца;
- 6 опорное кольцо;
- 7 пружина;
- 8 шток;
- 9 седло;
- 10 конус (разгружен по давлению);
- 11 направляющая камеры разгрузки;
- 12 уплотнительные кольца;
- 13 гайка штока;
- 14 прокладка;
- 15 крышка клапана;
- . 16 — пружинная шайба;
- 17 болт.

Выбор типоразмера клапана

Пример

Требуется выбрать регулирующий VFM-2R для центрального теплового пункта (ЦТП).

Исходные данные

Теплоноситель: вода с температурой $T_1 = 150\,^{\circ}\text{C}$, и давлением насыщенных паров $P_{\text{Hac}} = 3,86\,$ бар (табличное значение, зависит от температуры рабочей среды).

Избыточное давление теплоносителя перед клапаном: $P_1 = 7$ бар;

Предварительно заданный перепад давления на регулирующем клапане: $\Delta P_{\rm кл}$ =1,2 бар. Перепад давления на клапане не должен быть больше $\Delta P_{\rm max}$ максимально допустимого перепада давления, преодолеваемого электроприводом.

Расчетный расход теплоносителя: $G_p = 40 \text{ м}^3/\text{ч}$.

Решение

Рассчитаем требуемую пропускную способность клапана по формуле:

$$K_V=$$
 1,2 $imes rac{G_{
m p}}{\sqrt{\Delta P_{
m KA}}}$, где

1,2 — коэффициент запаса;

 G_p — расчетный расход теплоносителя через клапан, м³/ч;

 $\Delta P_{\rm kn}$ — заданный перепад давления на клапане, бар.

$$K_V = 1.2 \times \frac{40}{\sqrt{1.2}} = 43.8 \text{ m}^3/\text{q}$$

Предварительно выбираем клапан со значением $K_{v,s}$, которое является ближайшим и больше расчетного значения K_v :

VFM-2R, PN 16, DN 65, $K_{vs} = 55 \text{ м}^3/\text{ч}$, с коэффициентом начала кавитации Z = 0.4.

При работе клапана не должен возникать высокий шум и кавитация. Проведем проверку выбранного клапан.

Рассчитаем предельно допустимый перепад давления на клапане для работы без кавитации:

$$\Delta P_{\text{кл. пред}} = Z \cdot (P_1 - P_{\text{Hac}}) = 0.45 \cdot (7 - 3.86) = 1.4 \text{ бар, где:}$$

Z — коэффициент начала кавитации;

 ${\sf P}_1$ — избыточное давление теплоносителя перед регулирующим клапаном, бар;

 $P_{\text{нас}}$ — избыточное давление насыщенных паров воды в зависимости от ее температуры T_1 , бар.

$$\Delta P_{\kappa \pi} |_{\text{пред}} > \Delta P_{\kappa \pi}$$

значит клапан выбран верно и может работать при заданном перепаде давления без кавитации.

Рекомендуемая скорость прохождения теплоносителя во входном сечении клапана для тепловых пунктов жилого фонда от 1,5 до 3,5 м/с. Для всех остальных тепловых пунктов от 1,5 до 5 м/с.

Проверка клапана на шумообразование производится по формуле:

$$V = G_p \cdot (18,8/DN)^2$$

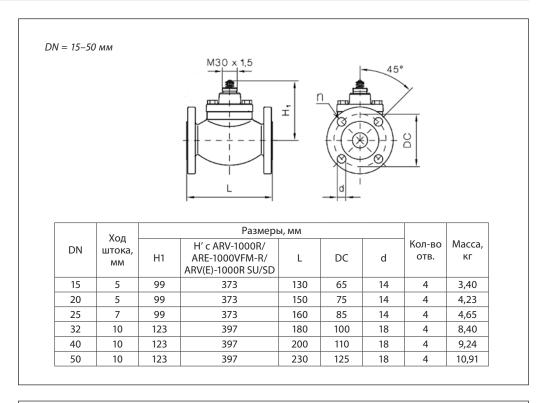
где:

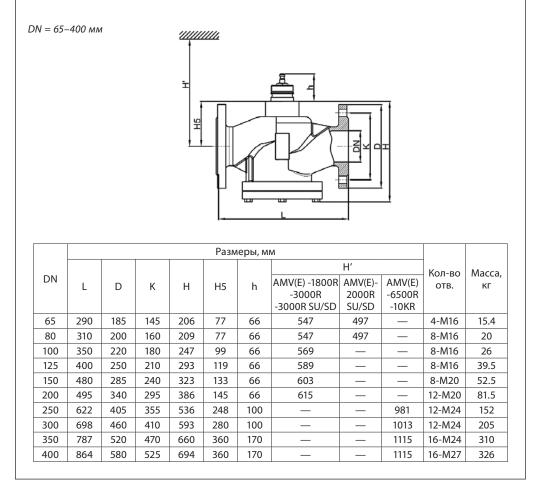
V — скорость теплоносителя во входном сечении клапана, м/с;

18,8 — переводной коэффициент;

DN — диаметр клапана, мм.

$$V = 40 \cdot (18,8/65)^2 = 3,3 \text{ M/c}.$$


Для ЦТП скорость теплоносителя допустима.


Итог

Выбираем код 065В3500R, регулирующий клапан Ридан VFM-2R, PN16, DN65, K_{vs} 55.

Габаритные и присоединительные размеры

